#unity/日常积累
SocketAsyncEventArgs 类
反馈
定义
命名空间:
System.Net.Sockets
程序集:
System.Net.Sockets.dll
Source:
SocketAsyncEventArgs.cs
表示异步套接字操作。
1
|
public class SocketAsyncEventArgs : EventArgs, IDisposable
|
继承
Object
EventArgs
SocketAsyncEventArgs
实现
IDisposable
示例
下面的代码示例为使用 SocketAsyncEventArgs 类的套接字服务器实现连接逻辑。 接受连接后,从客户端读取的所有数据都发送回客户端。 继续读取并回显到客户端模式,直到客户端断开连接。 此示例使用的 BufferManager 类显示在 方法的代码示例 SetBuffer(Byte[], Int32, Int32) 中。 此示例中使用的 SocketAsyncEventArgsPool 类显示在构造函数的代码示例 SocketAsyncEventArgs 中。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
|
// Implements the connection logic for the socket server.
// After accepting a connection, all data read from the client
// is sent back to the client. The read and echo back to the client pattern
// is continued until the client disconnects.
class Server
{
private int m_numConnections; // the maximum number of connections the sample is designed to handle simultaneously
private int m_receiveBufferSize;// buffer size to use for each socket I/O operation
BufferManager m_bufferManager; // represents a large reusable set of buffers for all socket operations
const int opsToPreAlloc = 2; // read, write (don't alloc buffer space for accepts)
Socket listenSocket; // the socket used to listen for incoming connection requests
// pool of reusable SocketAsyncEventArgs objects for write, read and accept socket operations
SocketAsyncEventArgsPool m_readWritePool;
int m_totalBytesRead; // counter of the total # bytes received by the server
int m_numConnectedSockets; // the total number of clients connected to the server
Semaphore m_maxNumberAcceptedClients;
// Create an uninitialized server instance.
// To start the server listening for connection requests
// call the Init method followed by Start method
//
// <param name="numConnections">the maximum number of connections the sample is designed to handle simultaneously</param>
// <param name="receiveBufferSize">buffer size to use for each socket I/O operation</param>
public Server(int numConnections, int receiveBufferSize)
{
m_totalBytesRead = 0;
m_numConnectedSockets = 0;
m_numConnections = numConnections;
m_receiveBufferSize = receiveBufferSize;
// allocate buffers such that the maximum number of sockets can have one outstanding read and
//write posted to the socket simultaneously
m_bufferManager = new BufferManager(receiveBufferSize * numConnections * opsToPreAlloc,
receiveBufferSize);
m_readWritePool = new SocketAsyncEventArgsPool(numConnections);
m_maxNumberAcceptedClients = new Semaphore(numConnections, numConnections);
}
// Initializes the server by preallocating reusable buffers and
// context objects. These objects do not need to be preallocated
// or reused, but it is done this way to illustrate how the API can
// easily be used to create reusable objects to increase server performance.
//
public void Init()
{
// Allocates one large byte buffer which all I/O operations use a piece of. This gaurds
// against memory fragmentation
m_bufferManager.InitBuffer();
// preallocate pool of SocketAsyncEventArgs objects
SocketAsyncEventArgs readWriteEventArg;
for (int i = 0; i < m_numConnections; i++)
{
//Pre-allocate a set of reusable SocketAsyncEventArgs
readWriteEventArg = new SocketAsyncEventArgs();
readWriteEventArg.Completed += new EventHandler<SocketAsyncEventArgs>(IO_Completed);
// assign a byte buffer from the buffer pool to the SocketAsyncEventArg object
m_bufferManager.SetBuffer(readWriteEventArg);
// add SocketAsyncEventArg to the pool
m_readWritePool.Push(readWriteEventArg);
}
}
// Starts the server such that it is listening for
// incoming connection requests.
//
// <param name="localEndPoint">The endpoint which the server will listening
// for connection requests on</param>
public void Start(IPEndPoint localEndPoint)
{
// create the socket which listens for incoming connections
listenSocket = new Socket(localEndPoint.AddressFamily, SocketType.Stream, ProtocolType.Tcp);
listenSocket.Bind(localEndPoint);
// start the server with a listen backlog of 100 connections
listenSocket.Listen(100);
// post accepts on the listening socket
SocketAsyncEventArgs acceptEventArg = new SocketAsyncEventArgs();
acceptEventArg.Completed += new EventHandler<SocketAsyncEventArgs>(AcceptEventArg_Completed);
StartAccept(acceptEventArg);
//Console.WriteLine("{0} connected sockets with one outstanding receive posted to each....press any key", m_outstandingReadCount);
Console.WriteLine("Press any key to terminate the server process....");
Console.ReadKey();
}
// Begins an operation to accept a connection request from the client
//
// <param name="acceptEventArg">The context object to use when issuing
// the accept operation on the server's listening socket</param>
public void StartAccept(SocketAsyncEventArgs acceptEventArg)
{
// loop while the method completes synchronously
bool willRaiseEvent = false;
while (!willRaiseEvent)
{
m_maxNumberAcceptedClients.WaitOne();
// socket must be cleared since the context object is being reused
acceptEventArg.AcceptSocket = null;
willRaiseEvent = listenSocket.AcceptAsync(acceptEventArg);
if (!willRaiseEvent)
{
ProcessAccept(acceptEventArg);
}
}
}
// This method is the callback method associated with Socket.AcceptAsync
// operations and is invoked when an accept operation is complete
//
void AcceptEventArg_Completed(object sender, SocketAsyncEventArgs e)
{
ProcessAccept(e);
// Accept the next connection request
StartAccept(e);
}
private void ProcessAccept(SocketAsyncEventArgs e)
{
Interlocked.Increment(ref m_numConnectedSockets);
Console.WriteLine("Client connection accepted. There are {0} clients connected to the server",
m_numConnectedSockets);
// Get the socket for the accepted client connection and put it into the
//ReadEventArg object user token
SocketAsyncEventArgs readEventArgs = m_readWritePool.Pop();
readEventArgs.UserToken = e.AcceptSocket;
// As soon as the client is connected, post a receive to the connection
bool willRaiseEvent = e.AcceptSocket.ReceiveAsync(readEventArgs);
if (!willRaiseEvent)
{
ProcessReceive(readEventArgs);
}
}
// This method is called whenever a receive or send operation is completed on a socket
//
// <param name="e">SocketAsyncEventArg associated with the completed receive operation</param>
void IO_Completed(object sender, SocketAsyncEventArgs e)
{
// determine which type of operation just completed and call the associated handler
switch (e.LastOperation)
{
case SocketAsyncOperation.Receive:
ProcessReceive(e);
break;
case SocketAsyncOperation.Send:
ProcessSend(e);
break;
default:
throw new ArgumentException("The last operation completed on the socket was not a receive or send");
}
}
// This method is invoked when an asynchronous receive operation completes.
// If the remote host closed the connection, then the socket is closed.
// If data was received then the data is echoed back to the client.
//
private void ProcessReceive(SocketAsyncEventArgs e)
{
// check if the remote host closed the connection
if (e.BytesTransferred > 0 && e.SocketError == SocketError.Success)
{
//increment the count of the total bytes receive by the server
Interlocked.Add(ref m_totalBytesRead, e.BytesTransferred);
Console.WriteLine("The server has read a total of {0} bytes", m_totalBytesRead);
//echo the data received back to the client
e.SetBuffer(e.Offset, e.BytesTransferred);
Socket socket = (Socket)e.UserToken;
bool willRaiseEvent = socket.SendAsync(e);
if (!willRaiseEvent)
{
ProcessSend(e);
}
}
else
{
CloseClientSocket(e);
}
}
// This method is invoked when an asynchronous send operation completes.
// The method issues another receive on the socket to read any additional
// data sent from the client
//
// <param name="e"></param>
private void ProcessSend(SocketAsyncEventArgs e)
{
if (e.SocketError == SocketError.Success)
{
// done echoing data back to the client
Socket socket = (Socket)e.UserToken;
// read the next block of data send from the client
bool willRaiseEvent = socket.ReceiveAsync(e);
if (!willRaiseEvent)
{
ProcessReceive(e);
}
}
else
{
CloseClientSocket(e);
}
}
private void CloseClientSocket(SocketAsyncEventArgs e)
{
Socket socket = (Socket)e.UserToken;
// close the socket associated with the client
try
{
socket.Shutdown(SocketShutdown.Send);
}
// throws if client process has already closed
catch (Exception) { }
socket.Close();
// decrement the counter keeping track of the total number of clients connected to the server
Interlocked.Decrement(ref m_numConnectedSockets);
// Free the SocketAsyncEventArg so they can be reused by another client
m_readWritePool.Push(e);
m_maxNumberAcceptedClients.Release();
Console.WriteLine("A client has been disconnected from the server. There are {0} clients connected to the server", m_numConnectedSockets);
}
}
|
注解
类 SocketAsyncEventArgs 是 类的一组增强的一部分,这些增强 System.Net.Sockets.Socket 功能提供可由专用的高性能套接字应用程序使用的替代异步模式。 此类专为需要高性能的网络服务器应用程序而设计。 例如,当接收大量数据) 时,应用程序可以独占或仅在目标热区域使用增强型异步模式 (。
这些增强功能的主要功能是避免在大容量异步套接字 I/O 期间重复分配和同步对象。 类当前实现的 System.Net.Sockets.Socket Begin/End 设计模式要求为每个异步套接字操作分配对象 System.IAsyncResult 。
在新的 System.Net.Sockets.Socket 类增强中,异步套接字操作由应用程序分配和维护的可重用 SocketAsyncEventArgs 对象描述。 高性能套接字应用程序非常清楚必须维持的重叠套接字操作的数量。 该应用程序可创建所需的 SocketAsyncEventArgs 对象数量。 例如,如果服务器应用程序需要随时有 15 个未完成的套接字接受操作以支持传入客户端连接速率,则它可以为此分配 15 个可重用 SocketAsyncEventArgs 对象。
使用此类执行异步套接字操作的模式包括以下步骤:
-
分配一个新的 SocketAsyncEventArgs 上下文对象,或从应用程序池中获取一个空闲对象。
-
将上下文对象的属性设置为即将 (完成回调方法执行的操作、数据缓冲区、缓冲区中的偏移量以及要传输的最大数据量,例如) 。
-
调用适当的套接字方法 (xxxAsync) 以启动异步操作。
-
如果异步套接字方法 (xxxAsync) 返回 true,请在回调中查询完成状态的上下文属性。
-
如果异步套接字方法 (xxxAsync) 返回 false,则操作同步完成。 可查询上下文属性获取操作结果。
-
重新使用上下文进行另一项操作,将其放回池中,或放弃它。
新的异步套接字操作上下文对象的生存期由应用程序代码和异步 I/O 引用的引用决定。 作为参数提交给异步套接字操作方法之一后,应用程序不必保留对异步套接字操作上下文对象的引用。 完成回调返回之前,应用程序会继续引用它。 但是,应用程序最好保留对上下文的引用,以便将来的异步套接字操作可以重复使用该引用。